login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175716
The total number of elements(ordered pairs) in all equivalence relations on {1,2,...,n}
1
0, 1, 6, 27, 120, 560, 2778, 14665, 82232, 488403, 3062980, 20221520, 140134404, 1016698813, 7703878042, 60833235795, 499592325152, 4259301450652, 37634032670886, 344092369602461, 3250925202629100
OFFSET
0,3
FORMULA
a(n) = n*A124427(n). - Joerg Arndt, Dec 04 2010.
E.g.f.: (x+x^2) * exp(x) * exp(exp(x)-1).
EXAMPLE
a(2)= 6 because the equivalence relations on {1,2}: {(1,1), (2,2)}, {(1,1), (2,2), (1,2), (2,1)} contain 6 ordered pairs.
MATHEMATICA
f[list_] := Length[list]^2; Table[Total[Map[f, Level[SetParttions[n], {2}]]], {n, 0, 12}] (* or *)
Range[0, 20]! CoefficientList[Series[(x + x^2)Exp[x] * Exp[Exp[x] - 1], {x, 0, 20}], x]
CROSSREFS
Sequence in context: A080620 A080627 A079762 * A178935 A249792 A002912
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 04 2010
STATUS
approved