login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175713
Expansion of 1/(1 - x - 4*x^2 + 4*x^3 - 2*x^4).
1
1, 1, 5, 5, 23, 25, 107, 125, 499, 621, 2331, 3069, 10907, 15101, 51115, 74029, 239899, 361757, 1127467, 1762957, 5305595, 8571069, 24996555, 41584365, 117897499, 201390877, 556636523, 973778765, 2630556347, 4701907069, 12442290443
OFFSET
0,3
COMMENTS
The ratio a(n+1)/a(n) approaches 2.1846664233601828969043938181074777323...
FORMULA
G.f.: 1/(1 - x - 4*x^2 + 4*x^3 - 2*x^4).
a(0)=1, a(1)=1, a(2)=5, a(3)=5; for n>3, a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) + 2*a(n-4). - Harvey P. Dale, Oct 10 2014
MAPLE
seq(coeff(series(1/(1-x-4*x^2+4*x^3-2*x^4), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 04 2019
MATHEMATICA
CoefficientList[Series[-1/(-1 +x +4x^2 -4x^3 +2x^4), {x, 0, 30}], x] (* or *) LinearRecurrence[{1, 4, -4, 2}, {1, 1, 5, 5}, 40] (* Harvey P. Dale, Oct 10 2014 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(1/(1-x-4*x^2+4*x^3-2*x^4)) \\ G. C. Greubel, Dec 04 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-x-4*x^2+4*x^3-2*x^4) )); // G. C. Greubel, Dec 04 2019
(Sage)
def A175713_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-x-4*x^2+4*x^3-2*x^4) ).list()
A175713_list(30) # G. C. Greubel, Dec 04 2019
(GAP) a:=[1, 1, 5, 5];; for n in [5..30] do a[n]:=a[n-1]+4*a[n-2]-4*a[n-3] + 2*a[n-4]; od; a; # G. C. Greubel, Dec 04 2019
CROSSREFS
Sequence in context: A183257 A255456 A338936 * A090936 A366443 A262117
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 04 2010
STATUS
approved