OFFSET
0,3
COMMENTS
The ratio a(n+1)/a(n) approaches 1.796757012458598901977511048324681177...
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,0,3,-4,2).
FORMULA
G.f.: 1/(1 - x - x^2 - 3*x^4 + 4*x^5 - 2*x^6).
MAPLE
seq(coeff(series(1/(1-x-x^2-3*x^4+4*x^5-2*x^6), x, n+1), x, n), n = 0..40); # G. C. Greubel, Dec 04 2019
MATHEMATICA
LinearRecurrence[{1, 1, 0, 3, -4, 2}, {1, 1, 2, 3, 8, 10}, 40] (* Bruno Berselli, May 17 2017 *)
PROG
(PARI) my(x='x+O('x^40)); Vec(1/(1-x-x^2-3*x^4+4*x^5-2*x^6)) \\ G. C. Greubel, Dec 04 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-x-x^2-3*x^4+4*x^5-2*x^6) )); // G. C. Greubel, Dec 04 2019
(Sage)
def A175715_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-x-x^2-3*x^4+4*x^5-2*x^6) ).list()
A175715_list(40) # G. C. Greubel, Dec 04 2019
(GAP) a:=[1, 1, 2, 3, 8, 10];; for n in [7..30] do a[n]:=a[n-1]+a[n-2]+3*a[n-4] - 4*a[n-5]+2*a[n-6]; od; a; # G. C. Greubel, Dec 04 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 04 2010
STATUS
approved