login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175715
Expansion of 1/(1 - x - x^2 - 3*x^4 + 4*x^5 - 2*x^6).
1
1, 1, 2, 3, 8, 10, 22, 35, 73, 112, 227, 376, 726, 1216, 2321, 3981, 7430, 12907, 23888, 41886, 76782, 135631, 247309, 438860, 796747, 1419144, 2568858, 4586608, 8284885, 14819657, 26728034, 47870371, 86244344, 154607362, 278326950, 499272603, 898307169
OFFSET
0,3
COMMENTS
The ratio a(n+1)/a(n) approaches 1.796757012458598901977511048324681177...
FORMULA
G.f.: 1/(1 - x - x^2 - 3*x^4 + 4*x^5 - 2*x^6).
MAPLE
seq(coeff(series(1/(1-x-x^2-3*x^4+4*x^5-2*x^6), x, n+1), x, n), n = 0..40); # G. C. Greubel, Dec 04 2019
MATHEMATICA
LinearRecurrence[{1, 1, 0, 3, -4, 2}, {1, 1, 2, 3, 8, 10}, 40] (* Bruno Berselli, May 17 2017 *)
PROG
(PARI) my(x='x+O('x^40)); Vec(1/(1-x-x^2-3*x^4+4*x^5-2*x^6)) \\ G. C. Greubel, Dec 04 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-x-x^2-3*x^4+4*x^5-2*x^6) )); // G. C. Greubel, Dec 04 2019
(Sage)
def A175715_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-x-x^2-3*x^4+4*x^5-2*x^6) ).list()
A175715_list(40) # G. C. Greubel, Dec 04 2019
(GAP) a:=[1, 1, 2, 3, 8, 10];; for n in [7..30] do a[n]:=a[n-1]+a[n-2]+3*a[n-4] - 4*a[n-5]+2*a[n-6]; od; a; # G. C. Greubel, Dec 04 2019
CROSSREFS
Sequence in context: A083799 A098844 A034437 * A329582 A138880 A063474
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 04 2010
STATUS
approved