login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175717
First differences of A175628.
1
0, 3, 2, 3, -5, 12, 6, 3, -22, 33, 10, 3, -33, 48, 14, 3, -74, 93, 18, 3, -85, 108, 22, 3, -156, 183, 26, 3, -161, 192, 30, 3, -268, 303, 34, 3, -261, 300, 38, 3, -410, 453, 42, 3, -385, 432, 46, 3, -582, 633, 50, 3, -533, 588, 54, 3, -784, 843, 58, 3, -705, 768, 62, 3, -1016, 1083, 66, 3, -901, 972, 70
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,-1,-1,-1,-1,2,2,2,2,2,2,2,2,-1,-1,-1,-1,-1,-1,-1,-1).
FORMULA
a(2*n) + a(2*n+1) = A144396(n+1).
It seems that a(n) = 3 iff n in A131098.
a(n) = A175628(n+2) - A175628(n+1).
a(n)= -a(n-1) -a(n-2) -a(n-3) -a(n-4) -a(n-5) -a(n-6) -a(n-7) +2*a(n-8) +2*a(n-9) +2*a(n-10) +2*a(n-11) +2*a(n-12) +2*a(n-13) +2*a(n-14) +2*a(n-15) -a(n-16) -a(n-17) -a(n-18) -a(n-19) -a(n-20) -a(n-21) -a(n-22) -a(n-23). - R. J. Mathar, Dec 08 2010
From Luce ETIENNE, Dec 29 2019: (Start)
a(n) = 3*a(n-8) - 3*a(n-16) + a(n-24).
a(n) = (3*(264*m^7 - 6377*m^6 + 60963*m^5 - 293615*m^4 + 748881*m^3 - 962528*m^2 + 502812*m - 25200)*floor(n/8)^2 + 7*(136*m^7 - 3209*m^6 + 29731*m^5 - 137375*m^4 + 332209*m^3 - 400496*m^2 + 194844*m - 5040)*floor(n/8) + m*(472*m^6 - 11235*m^5 + 105049*m^4 - 488985*m^3 + 1181803*m^2 - 1389780*m + 617796))/5040, where m = n mod 8. (End)
MAPLE
A175628 := proc(n) if type(n, 'even') then nh := n/2 +1; 1/4-1/nh^2 ; numer(%) ; else nh := (n-1)/2 ; nh*(nh+2) ; end if; end proc:
A175717 := proc(n) A175628(n+2)-A175628(n+1) ; end proc:
MATHEMATICA
LinearRecurrence[{-1, -1, -1, -1, -1, -1, -1, 2, 2, 2, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 3, 2, 3, -5, 12, 6, 3, -22, 33, 10, 3, -33, 48, 14, 3, -74, 93, 18, 3, -85, 108, 22}, 90] (* Harvey P. Dale, Apr 17 2015 *)
b[n_]:= If[OddQ[n], (n-1)*(n+3)/4, (n^2+4*n-12)*(37 +27*(-1)^(n/2) +6*Cos[(n+2)*Pi/4])/2^8]; Table[b[n+2] - b[n+1], {n, 0, 90}] (* G. C. Greubel, Dec 04 2019 *)
PROG
(PARI) b(n) = if(n%2==1, (n-1)*(n+3)/4, round((n^2+4*n-12)*(37 +27*(-1)^(n/2) +6*cos((n+2)*Pi/4))/2^8) );
vector(91, n, b(n+1) - b(n) ) \\ G. C. Greubel, Sep 19 2018; Dec 04 2019
(Magma) R:= RealField(20);
b:= func< n | (n mod 2) eq 1 select (n-1)*(n+3)/4 else Round((n^2+4*n-12)*(37 +27*(-1)^(n/2) +6*Cos((n+2)*Pi(R)/4))/2^8) >;
[b(n+2) - b(n+1): n in [0..90]]; // G. C. Greubel, Sep 19 2018; Dec 04 2019
(Sage)
def b(n):
if (mod(n, 2)==1): return (n-1)*(n+3)/4
else: return round((n^2+4*n-12)*(37 +27*(-1)^(n/2) +6*cos((n+2)*pi/4))/2^8)
[b(n+2) -b(n+1) for n in (0..90)] # G. C. Greubel, Dec 04 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Dec 04 2010
STATUS
approved