login
The total number of elements(ordered pairs) in all equivalence relations on {1,2,...,n}
1

%I #13 Mar 30 2012 17:23:10

%S 0,1,6,27,120,560,2778,14665,82232,488403,3062980,20221520,140134404,

%T 1016698813,7703878042,60833235795,499592325152,4259301450652,

%U 37634032670886,344092369602461,3250925202629100

%N The total number of elements(ordered pairs) in all equivalence relations on {1,2,...,n}

%F a(n) = n*A124427(n). - Joerg Arndt, Dec 04 2010.

%F E.g.f.: (x+x^2) * exp(x) * exp(exp(x)-1).

%e a(2)= 6 because the equivalence relations on {1,2}: {(1,1), (2,2)}, {(1,1), (2,2), (1,2), (2,1)} contain 6 ordered pairs.

%t f[list_] := Length[list]^2; Table[Total[Map[f, Level[SetParttions[n], {2}]]], {n, 0, 12}] (* or *)

%t Range[0,20]! CoefficientList[Series[(x + x^2)Exp[x] * Exp[Exp[x] - 1], {x, 0, 20}], x]

%Y Cf. A124427, A000595.

%K nonn

%O 0,3

%A _Geoffrey Critzer_, Dec 04 2010