login
A175164
a(n) = 16*(2^n - 1).
6
0, 16, 48, 112, 240, 496, 1008, 2032, 4080, 8176, 16368, 32752, 65520, 131056, 262128, 524272, 1048560, 2097136, 4194288, 8388592, 16777200, 33554416, 67108848, 134217712, 268435440
OFFSET
0,2
FORMULA
a(n) = 2^(n+4) - 16.
a(n) = A173787(n+4, 4).
a(2*n) = A140504(n+2)*A028399(n).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=16. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*x/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) - exp(x)). (End)
MATHEMATICA
16*(2^Range[0, 40] - 1) (* G. C. Greubel, Jul 08 2021 *)
PROG
(Magma) I:=[0, 16]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
(Sage) [16*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
(Python)
def A175164(n): return (1<<n)-1<<4 # Chai Wah Wu, Jun 27 2023
CROSSREFS
Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), this sequence (m=16), A175165 (m=32), A175166 (m=64).
Sequence in context: A189972 A023648 A098322 * A331772 A190112 A211576
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 28 2010
STATUS
approved