login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331772
a(n) = Sum_{-n<i<n, -n<j<n, gcd{i,j}=2} (n-|i|)*(n-|j|).
3
0, 0, 16, 48, 120, 224, 424, 688, 1096, 1600, 2392, 3344, 4568, 5984, 7976, 10256, 13112, 16320, 20360, 24848, 30136, 35936, 43208, 51152, 60184, 69952, 81800, 94576, 109000, 124448, 141944, 160592, 181480, 203648, 229400, 256688, 286424, 317792
OFFSET
1,3
LINKS
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090. See p. 158.
MAPLE
VR := proc(m, n, q) local a, i, j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i, j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
[seq(VR(n, n, 2), n=1..50)];
MATHEMATICA
A331772[n_]:=Sum[If[GCD[i, j]==2, If[i==j, 4(n-i)^2, 8(n-i)(n-j)], 0], {i, 2, n-1, 2}, {j, 2, i, 2}]+If[n>2, 4n(n-2), 0]; Array[A331772, 50] (* Paolo Xausa, Oct 18 2023 *)
CROSSREFS
When divided by 8 this becomes A331773.
Sequence in context: A023648 A098322 A175164 * A190112 A211576 A211590
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 08 2020
STATUS
approved