login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211576
Number of -2..2 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having four, five or six distinct values for every i,j,k<=n.
1
16, 48, 124, 294, 680, 1578, 3600, 8458, 19460, 46510, 108280, 262542, 617264, 1512270, 3580596, 8834026, 21015224, 52087762, 124294096, 308994090, 738810308, 1840241022, 4405749912, 10987766974, 26328139088, 65715472894, 157549520692
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 7*a(n-2) - 45*a(n-3) + 10*a(n-4) + 155*a(n-5) - 130*a(n-6) - 180*a(n-7) + 216*a(n-8) + 36*a(n-9) - 72*a(n-10).
Empirical g.f.: 2*x*(8 - 8*x - 90*x^2 + 91*x^3 + 318*x^4 - 290*x^5 - 421*x^6 + 286*x^7 + 186*x^8 - 60*x^9) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)). - Colin Barker, Jul 19 2018
EXAMPLE
Some solutions for n=5:
.-2....1...-2...-1...-1...-2....1...-1....0....0...-2....0...-2....0....0....2
..0....0....1....2...-2...-1....0....0....2...-1....0....2...-1....1....2....1
.-2....1...-2....0....1....2...-1...-1....1....0...-2....1....2...-2....1....0
..0....2....1....2...-2....0....2....2....2....1...-1....2...-1...-1....2....2
.-2....1...-2...-1...-1....2...-1...-1....0....0...-2....1....0...-2....0....0
..0....2....0....2....2...-1....0....2....1....1....0....2....1...-1....2....1
CROSSREFS
Sequence in context: A175164 A331772 A190112 * A211590 A211584 A211598
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 16 2012
STATUS
approved