login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173261
Array T(n,k) read by antidiagonals: T(n,2k)=1, T(n,2k+1)=n, n>=2, k>=0.
1
1, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 3, 1, 1, 6, 1, 4, 1, 2, 1, 7, 1, 5, 1, 3, 1, 1, 8, 1, 6, 1, 4, 1, 2, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2
OFFSET
2,3
COMMENTS
One may define another array B(n,0) = -1, B(n,k) = T(n,k-1) + 2*B(n,k-1), n>=2, which also starts in columns k>=0, as follows:
-1, -1, 0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364 ...: A084639;
-1, -1, 1, 3, 9, 19, 41, 83, 169, 339, 681, 1363, 2729;
-1, -1, 2, 5, 14, 29, 62, 125, 254, 509, 1022, 2045, 4094;
-1, -1, 3, 7, 19, 39, 83, 167, 339, 679, 1363, 2727, 5459 ...: -A173114;
B(n,k) = (n-1)*A001045(k) - T(n,k).
First differences are B(n,k+1) - B(n,k) = (n-1)*A001045(k).
FORMULA
From G. C. Greubel, Dec 03 2021: (Start)
T(n, k) = (1/2)*((n+3) - (n+1)*(-1)^k).
Sum_{k=0..n} T(n-k, k) = A024206(n).
Sum_{k=0..floor((n+2)/2)} T(n-2*k+2, k) = (1/16)*(2*n^2 4*n -5*(1 +(-1)^n) + 4*sin(n*Pi/2)) (diagonal sums).
T(2*n-2, n) = A093178(n). (End)
EXAMPLE
The array T(n,k) starts in row n=2 with columns k>=0 as:
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 ... A000034;
1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3 ... A010684;
1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4 ... A010685;
1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5 ... A010686;
1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6 ... A010687;
1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7 ... A010688;
1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8 ... A010689;
1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9 ... A010690;
1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 ... A010691.
Antidiagonal triangle begins as:
1;
1, 2;
1, 3, 1;
1, 4, 1, 2;
1, 5, 1, 3, 1;
1, 6, 1, 4, 1, 2;
1, 7, 1, 5, 1, 3, 1;
1, 8, 1, 6, 1, 4, 1, 2;
1, 9, 1, 7, 1, 5, 1, 3, 1;
1, 10, 1, 8, 1, 6, 1, 4, 1, 2;
1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1;
1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2;
1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1;
1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2;
MATHEMATICA
T[n_, k_]:= (1/2)*((n+3) - (n+1)*(-1)^k);
Table[T[n-k, k], {n, 2, 17}, {k, 2, n}]//Flatten (* G. C. Greubel, Dec 03 2021 *)
PROG
(Sage) flatten([[(1/2)*((n-k+3) - (n-k+1)*(-1)^k) for k in (2..n)] for n in (2..17)]) # G. C. Greubel, Dec 03 2021
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Curtz, Feb 14 2010
STATUS
approved