login
A010687
Repeat (1,6): Period 2.
7
1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6
OFFSET
0,2
COMMENTS
Continued fraction for (3+sqrt(15))/6. - Philippe Deléham, Sep 25 2006
This sequence can be generated by an infinite number of formulas all having the form a^(b*n) mod c subject to the following conditions. The number a can be congruent to either 3,5 or 6 mod 7. If a is congruent to 3 or 5 mod 7 then b can be any number of the form 3*k+6. If a is congruent to 6 mod 7 then b can be any number of the form 2k+1. Finally, if a is congruent to either 6, 26, or 31 mod 35 then c can be 7 or 35; otherwise, we use c = 7. For example: a(n) = 33^(15*n) mod 7, a(n) = 31^(9*n) mod 7, and a(n) = 31^(9*n) mod 35. - Gary Detlefs, May 19 2014
FORMULA
G.f.: (1+6*x)/(1-x^2). - Philippe Deléham, Sep 25 2006
a(n) = 6^n mod 7. - Zerinvary Lajos, Nov 26 2009
MAPLE
A010687:=n->(6^n mod 7); seq(A010687(n), n=0..100); # Wesley Ivan Hurt, May 19 2014
MATHEMATICA
Table[Mod[6^n, 7], {n, 0, 100}] (* Wesley Ivan Hurt, May 19 2014 *)
PROG
(Sage) [power_mod(6, n, 7)for n in range(0, 100)] # Zerinvary Lajos, Nov 26 2009
(PARI) a(n)=n%2*5+1 \\ Charles R Greathouse IV, Jul 13 2016
CROSSREFS
Sequence in context: A348999 A349000 A344699 * A176355 A109918 A339433
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1996
STATUS
approved