login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010689
Periodic sequence: Repeat 1, 8.
14
1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1
OFFSET
0,2
COMMENTS
Also the digital root of 8^n. Also the decimal expansion of 2/11 = 0.181818181818... - Cino Hilliard, Dec 31 2004
Interleaving of A000012 and A010731. - Klaus Brockhaus, Apr 02 2010
Continued fraction expansion of (2 + sqrt(6))/4. - Klaus Brockhaus, Apr 02 2010
Digital root of the powers of any number congruent to 8 mod 9. - Alonso del Arte, Jan 26 2014
REFERENCES
Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.
FORMULA
From Paul Barry, Sep 16 2004: (Start)
G.f.: (1 + 8*x)/((1 - x)*(1 + x)).
a(n) = (9 - 7*(-1)^n)/2.
a(n) = 8^(ceiling(n/2) - floor(n/2)).
a(n) = gcd((n-1)^3, (n+1)^3). (End)
MATHEMATICA
Table[Mod[8^n, 9], {n, 0, 99}] (* Alonso del Arte, Jan 26 2014 *)
PadRight[{}, 120, {1, 8}] (* Harvey P. Dale, Jun 03 2015 *)
PROG
(Sage) [power_mod(8, n, 9)for n in range(0, 105)] # Zerinvary Lajos, Nov 27 2009
(Magma) &cat[ [1, 8]: n in [0..52] ]; // Klaus Brockhaus, Apr 02 2010
(Magma) &cat [[1, 8]^^60]; // Bruno Berselli, Mar 10 2017
(Maxima) A010689(n):=if evenp(n) then 1 else 8$
makelist(A010689(n), n, 0, 30); /* Martin Ettl, Nov 09 2012 */
(PARI) a(n)=1; if(n%2==1, 8, 1) \\ Felix Fröhlich, Aug 11 2014
CROSSREFS
Cf. A000012 (all 1's sequence), A010731 (all 8's sequence), A174925 (decimal expansion of (2 + sqrt(6))/4). [Klaus Brockhaus, Apr 02 2010]
Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 4, A100402; c = 5, A070366; c = 7, A070403.
Cf. sequences listed in Comments section of A283393.
Sequence in context: A154460 A021554 A021059 * A070637 A070651 A266528
KEYWORD
nonn,cofr,cons,easy
EXTENSIONS
Definition edited and keywords cons, cofr added by Klaus Brockhaus, Apr 02 2010
STATUS
approved