Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Dec 18 2023 09:38:11
%S 1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,
%T 1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,
%U 1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1
%N Periodic sequence: Repeat 1, 8.
%C Also the digital root of 8^n. Also the decimal expansion of 2/11 = 0.181818181818... - _Cino Hilliard_, Dec 31 2004
%C Interleaving of A000012 and A010731. - _Klaus Brockhaus_, Apr 02 2010
%C Continued fraction expansion of (2 + sqrt(6))/4. - _Klaus Brockhaus_, Apr 02 2010
%C Digital root of the powers of any number congruent to 8 mod 9. - _Alonso del Arte_, Jan 26 2014
%D Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).
%F From _Paul Barry_, Sep 16 2004: (Start)
%F G.f.: (1 + 8*x)/((1 - x)*(1 + x)).
%F a(n) = (9 - 7*(-1)^n)/2.
%F a(n) = 8^(ceiling(n/2) - floor(n/2)).
%F a(n) = gcd((n-1)^3, (n+1)^3). (End)
%t Table[Mod[8^n, 9], {n, 0, 99}] (* _Alonso del Arte_, Jan 26 2014 *)
%t PadRight[{},120,{1,8}] (* _Harvey P. Dale_, Jun 03 2015 *)
%o (Sage) [power_mod(8,n,9)for n in range(0,105)] # _Zerinvary Lajos_, Nov 27 2009
%o (Magma) &cat[ [1, 8]: n in [0..52] ]; // _Klaus Brockhaus_, Apr 02 2010
%o (Magma) &cat [[1,8]^^60]; // _Bruno Berselli_, Mar 10 2017
%o (Maxima) A010689(n):=if evenp(n) then 1 else 8$
%o makelist(A010689(n),n,0,30); /* _Martin Ettl_, Nov 09 2012 */
%o (PARI) a(n)=1; if(n%2==1, 8, 1) \\ _Felix Fröhlich_, Aug 11 2014
%Y Cf. A000012 (all 1's sequence), A010731 (all 8's sequence), A174925 (decimal expansion of (2 + sqrt(6))/4). [_Klaus Brockhaus_, Apr 02 2010]
%Y Cf. Digital roots of powers of c mod 9: c = 2, A153130; c = 4, A100402; c = 5, A070366; c = 7, A070403.
%Y Cf. sequences listed in Comments section of A283393.
%K nonn,cofr,cons,easy
%O 0,2
%A _N. J. A. Sloane_
%E Definition edited and keywords cons, cofr added by _Klaus Brockhaus_, Apr 02 2010