login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262891 a(n) = A060990(A259934(n)); branching degree of node n in the infinite trunk of the tree generated by edge-relation A049820(child) = parent. 3
2, 1, 3, 1, 1, 4, 1, 2, 1, 3, 1, 2, 2, 4, 2, 1, 1, 3, 1, 2, 3, 1, 2, 3, 2, 2, 3, 4, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 2, 3, 3, 1, 1, 3, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 3, 2, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 2, 3, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10341

FORMULA

a(n) = A060990(A259934(n)).

MATHEMATICA

nMax = 122; seq0 = {0}; seq = {1}; K = 1; While[seq != seq0, Print["K = ", K]; NN = K*nMax; Clear[A, B, S]; S[_] = 0; For[n = NN + 1, n <= 2*NN, n++, k = n - DivisorSigma[0, n]; If[k <= NN, S[k] = S[k] + 1; B[k] = n]]; For[n = NN, n >= 3, n--, If[S[n] >= 1, k = n - DivisorSigma[0, n]; S[k] = S[k] + 1; B[k] = n]]; A[0] = 0; A[1] = 2; For[n = 2, True, n++, b = B[A[n - 1]]; If[b > NN || S[b] > 1, Break[]]; A[n] = b]; Clear[a0]; a0[_] = 0; Do[n = x - DivisorSigma[0, x]; a0[n]++, {x, 1, NN}]; a[n_] := a0[A[n]]; seq0 = seq; seq = Table[a[n], {n, 0, nMax}]; K = 2K]; A262891 = seq (* Jean-Fran├žois Alcover, Nov 16 2016, after Robert Israel for A259934 *)

PROG

(Scheme) (define (A262891 n) (A060990 (A259934 n)))

CROSSREFS

Cf. A049820, A060990, A259934.

Positions of ones: A262892.

Sequence in context: A126705 A263646 A113924 * A178340 A173261 A084296

Adjacent sequences:  A262888 A262889 A262890 * A262892 A262893 A262894

KEYWORD

nonn

AUTHOR

Antti Karttunen, Oct 04 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 12:35 EDT 2018. Contains 316263 sequences. (Running on oeis4.)