login
A262889
a(n) = total number of nodes in the finite subtrees branching "right" (to the "larger side") from node n in the infinite trunk (A259934) of the tree generated by edge-relation A049820(child) = parent.
5
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 13, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 5, 0, 4, 0, 1, 7, 0, 0, 7, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 3, 0, 22, 1, 0, 1, 2, 0, 6, 0, 0, 0, 0, 0, 0
OFFSET
0,14
LINKS
FORMULA
a(n) = sum_{k = A259934(n+1) .. A262686(A259934(n))} [A049820(k) = A259934(n)] * A262697(k).
(Here [ ] stands for Iverson bracket, giving as its result 1 only when A049820(k) = A259934(n), and 0 otherwise).
Other identities. For all n >= 0:
A262890(n) = A262888(n) + a(n).
PROG
(Scheme)
(define (A262889 n) (let ((t (A259934 n)) (u (A259934 (+ 1 n)))) (let loop ((s 0) (k (A262686 t))) (cond ((<= k u) s) ((= t (A049820 k)) (loop (+ s (A262697 k)) (- k 1))) (else (loop s (- k 1)))))))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 04 2015
STATUS
approved