%I #11 Nov 17 2016 11:51:45
%S 2,1,3,1,1,4,1,2,1,3,1,2,2,4,2,1,1,3,1,2,3,1,2,3,2,2,3,4,2,2,1,1,1,2,
%T 3,2,1,1,2,1,2,2,3,3,1,1,3,2,2,1,1,1,4,1,1,1,2,2,1,2,1,2,1,2,2,1,2,2,
%U 1,3,2,1,1,1,1,1,1,3,2,2,1,2,2,1,1,2,2,2,2,2,1,1,2,1,2,2,1,3,2,2,4,2,2,2,3,2,2,3,2,1,2,2,1,3,2,2,3,1,2,3,2,2,1
%N a(n) = A060990(A259934(n)); branching degree of node n in the infinite trunk of the tree generated by edge-relation A049820(child) = parent.
%H Antti Karttunen, <a href="/A262891/b262891.txt">Table of n, a(n) for n = 0..10341</a>
%F a(n) = A060990(A259934(n)).
%t nMax = 122; seq0 = {0}; seq = {1}; K = 1; While[seq != seq0, Print["K = ", K]; NN = K*nMax; Clear[A, B, S]; S[_] = 0; For[n = NN + 1, n <= 2*NN, n++, k = n - DivisorSigma[0, n]; If[k <= NN, S[k] = S[k] + 1; B[k] = n]]; For[n = NN, n >= 3, n--, If[S[n] >= 1, k = n - DivisorSigma[0, n]; S[k] = S[k] + 1; B[k] = n]]; A[0] = 0; A[1] = 2; For[n = 2, True, n++, b = B[A[n - 1]]; If[b > NN || S[b] > 1, Break[]]; A[n] = b]; Clear[a0]; a0[_] = 0; Do[n = x - DivisorSigma[0, x]; a0[n]++, {x, 1, NN}]; a[n_] := a0[A[n]]; seq0 = seq; seq = Table[a[n], {n, 0, nMax}]; K = 2K]; A262891 = seq (* _Jean-François Alcover_, Nov 16 2016, after _Robert Israel_ for A259934 *)
%o (Scheme) (define (A262891 n) (A060990 (A259934 n)))
%Y Cf. A049820, A060990, A259934.
%Y Positions of ones: A262892.
%K nonn
%O 0,1
%A _Antti Karttunen_, Oct 04 2015