login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173264
T(0,k) = 1 and T(n,k) = [x^k] ((x - 2)*x^n + 1)/((x - 1)*(x + 1)^n) for n >= 1, square array read by descending antidiagonals (n >= 0, k >= 0).
2
1, 1, -1, 1, 2, -1, 1, -2, 1, -1, 1, 2, 0, 2, -1, 1, -2, -1, -4, 3, -1, 1, 2, 2, 8, -7, 4, -1, 1, -2, -3, -14, 13, -11, 5, -1, 1, 2, 4, 22, -20, 24, -16, 6, -1, 1, -2, -5, -32, 27, -46, 40, -22, 7, -1, 1, 2, 6, 44, -33, 82, -86, 62, -29, 8, -1, 1, -2, -7, -58, 37, -139, 166, -148, 91, -37, 9, -1
OFFSET
0,5
EXAMPLE
Square array begins:
n\k | 0 1 2 3 4 5 6 7 8 ...
--------------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 ...
1 | -1 2 -2 2 -2 2 -2 2 -2 ...
2 | -1 1 0 -1 2 -3 4 -5 6 ...
3 | -1 2 -4 8 -14 22 -32 44 -58 ...
4 | -1 3 -7 13 -20 27 -33 37 -38 ...
5 | -1 4 -11 24 -46 82 -139 226 -354 ...
6 | -1 5 -16 40 -86 166 -294 485 -754 ...
7 | -1 6 -22 62 -148 314 -610 1108 -1910 ...
8 | -1 7 -29 91 -239 553 -1163 2269 -4164 ...
...
MATHEMATICA
p[x_, n_] = If[n == 0, 1/(1 - x), (x^n - Sum[x^i, {i, 0, n - 1}])/( 1 + x)^n];
a = Table[Table[SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 0, 20}];
Flatten[Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]]
PROG
(Maxima) (kk : 50, nn : 15)$
gf(n) := taylor(if n = 0 then 1/(1 - x) else ((x - 2)*x^n + 1)/((x - 1)*(x + 1)^n), x, 0, kk)$
T(n, k) := ratcoef(gf(n), x, k)$
create_list(T(k, n - k), n, 0, nn, k, 0, n);
/* Franck Maminirina Ramaharo, Jan 23 2019 */
CROSSREFS
Sequence in context: A280747 A110955 A211983 * A056731 A042974 A235757
KEYWORD
sign,easy,tabl
AUTHOR
Roger L. Bagula, Feb 14 2010
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Jan 23 2019
STATUS
approved