login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171972
Greatest integer k such that k/n^2 < sqrt(3).
8
0, 1, 6, 15, 27, 43, 62, 84, 110, 140, 173, 209, 249, 292, 339, 389, 443, 500, 561, 625, 692, 763, 838, 916, 997, 1082, 1170, 1262, 1357, 1456, 1558, 1664, 1773, 1886, 2002, 2121, 2244, 2371, 2501, 2634, 2771, 2911, 3055, 3202, 3353, 3507, 3665, 3826, 3990, 4158
OFFSET
0,3
COMMENTS
Integer part of the surface area of a regular tetrahedron with edge length n.
A171970(n)*A005843(n) <= a(n);
a(n) <= 4*A171971(n); 0 <= a(n) - 4*A171971(n) < 4.
LINKS
Eric Weisstein's World of Mathematics, Tetrahedron
Wikipedia, Tetrahedron
FORMULA
a(n) = floor(n^2 * sqrt(3)).
a(n) = A022838(n^2);
a(n) = A293410(n) - 1 for n > 0.
MATHEMATICA
z = 120; r = Sqrt[3];
Table[Floor[r*n^2], {n, 0, z}]; (* A171972 *)
Table[Ceiling[r*n^2], {n, 0, z}]; (* A293410 *)
Table[Round[r*n^2], {n, 0, z}]; (* A070169. - Clark Kimberling, Oct 11 2017 *)
PROG
(Haskell)
a171972 = floor . (* sqrt 3) . fromInteger . a000290
-- Reinhard Zumkeller, Dec 15 2012
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 20 2010
STATUS
approved