Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 May 22 2019 02:10:00
%S 0,1,6,15,27,43,62,84,110,140,173,209,249,292,339,389,443,500,561,625,
%T 692,763,838,916,997,1082,1170,1262,1357,1456,1558,1664,1773,1886,
%U 2002,2121,2244,2371,2501,2634,2771,2911,3055,3202,3353,3507,3665,3826,3990,4158
%N Greatest integer k such that k/n^2 < sqrt(3).
%C Integer part of the surface area of a regular tetrahedron with edge length n.
%C A171970(n)*A005843(n) <= a(n);
%C a(n) <= 4*A171971(n); 0 <= a(n) - 4*A171971(n) < 4.
%H Reinhard Zumkeller, <a href="/A171972/b171972.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Tetrahedron.html">Tetrahedron</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Tetrahedron">Tetrahedron</a>
%F a(n) = floor(n^2 * sqrt(3)).
%F a(n) = A022838(n^2);
%F a(n) = A293410(n) - 1 for n > 0.
%t z = 120; r = Sqrt[3];
%t Table[Floor[r*n^2], {n, 0, z}]; (* A171972 *)
%t Table[Ceiling[r*n^2], {n, 0, z}]; (* A293410 *)
%t Table[Round[r*n^2], {n, 0, z}]; (* A070169. - _Clark Kimberling_, Oct 11 2017 *)
%o (Haskell)
%o a171972 = floor . (* sqrt 3) . fromInteger . a000290
%o -- _Reinhard Zumkeller_, Dec 15 2012
%Y Cf. A002194, A070169, A171974, A171973, A171975, A000290, A293410.
%K nonn
%O 0,3
%A _Reinhard Zumkeller_, Jan 20 2010