OFFSET
1,2
COMMENTS
From Andrew Howroyd, Mar 01 2023: (Start)
The graph minors are any of the following:
- pan;
- cycle (maximum n vertices);
- cycle plus an isolated vertex;
- nonempty set of paths;
- claw plus a possibly empty set of paths.
In each of the above cases, at most n + 1 vertices may be used. The claw is a star with one branch that has length 1 and two others that may be longer. (End)
Extended to a(1) using the formula.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Graph Minor
Eric Weisstein's World of Mathematics, Pan Graph
FORMULA
a(n) = 3*(n-2) + A000070(n+1) - 1 + Sum_{j=0..n-3} floor((n-j-1)/2) * A000070(j). - Andrew Howroyd, Mar 01 2023
MATHEMATICA
A000070[n_] := Sum[PartitionsP[k], {k, 0, n}]; Table[3 (n - 2) + A000070[n + 1] - 1 + Sum[Floor[(n - j - 1)/2] A000070[j], {j, 0, n - 3}], {n, 20}] (* Eric W. Weisstein, Oct 11 2023 *)
PROG
(PARI) seq(n)={my(v=vector(n+2), s=0); for(i=0, n+1, s+=numbpart(i); v[i+1]=s); vector(n-2, i, my(n=i+2); i*3 + v[n+2] - 1 + sum(j=0, n-3, (n-j-1)\2*v[1+j]))} \\ Andrew Howroyd, Mar 01 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, May 07 2022
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Mar 01 2023
Terms a(1)-a(2) prepended by Eric W. Weisstein, Oct 11 2023
STATUS
approved