login
A353603
Number of graph minors in the n-pan graph.
1
0, 6, 15, 27, 46, 73, 115, 176, 268, 400, 594, 868, 1259, 1803, 2562, 3600, 5021, 6936, 9514, 12943, 17493, 23472, 31309, 41497, 54703, 71706, 93532, 121386, 156830, 201703, 258352, 329551, 418790, 530200, 668926, 841053, 1054090, 1316921, 1640414, 2037413
OFFSET
1,2
COMMENTS
From Andrew Howroyd, Mar 01 2023: (Start)
The graph minors are any of the following:
- pan;
- cycle (maximum n vertices);
- cycle plus an isolated vertex;
- nonempty set of paths;
- claw plus a possibly empty set of paths.
In each of the above cases, at most n + 1 vertices may be used. The claw is a star with one branch that has length 1 and two others that may be longer. (End)
Extended to a(1) using the formula.
LINKS
Eric Weisstein's World of Mathematics, Graph Minor
Eric Weisstein's World of Mathematics, Pan Graph
FORMULA
a(n) = 3*(n-2) + A000070(n+1) - 1 + Sum_{j=0..n-3} floor((n-j-1)/2) * A000070(j). - Andrew Howroyd, Mar 01 2023
MATHEMATICA
A000070[n_] := Sum[PartitionsP[k], {k, 0, n}]; Table[3 (n - 2) + A000070[n + 1] - 1 + Sum[Floor[(n - j - 1)/2] A000070[j], {j, 0, n - 3}], {n, 20}] (* Eric W. Weisstein, Oct 11 2023 *)
PROG
(PARI) seq(n)={my(v=vector(n+2), s=0); for(i=0, n+1, s+=numbpart(i); v[i+1]=s); vector(n-2, i, my(n=i+2); i*3 + v[n+2] - 1 + sum(j=0, n-3, (n-j-1)\2*v[1+j]))} \\ Andrew Howroyd, Mar 01 2023
CROSSREFS
Cf. A000070.
Sequence in context: A255605 A171972 A225285 * A165454 A333646 A063525
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, May 07 2022
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Mar 01 2023
Terms a(1)-a(2) prepended by Eric W. Weisstein, Oct 11 2023
STATUS
approved