login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171379
Triangle, read by rows, T(n, k) = A059481(n,k)*(A059481(n,k) - 1)/2.
1
0, 1, 3, 3, 15, 45, 6, 45, 190, 595, 10, 105, 595, 2415, 7875, 15, 210, 1540, 7875, 31626, 106491, 21, 378, 3486, 21945, 106491, 426426, 1471470, 28, 630, 7140, 54285, 313236, 1471470, 5887596, 20701395, 36, 990, 13530, 122265, 827541, 4507503, 20701395, 82812015, 295475895
OFFSET
1,3
COMMENTS
Row sums are: {0, 4, 63, 836, 11000, 147757, 2030217, 28435780, 404461170, 5824442504, ...}.
The sequence is the number of connections between figurate numbers A059481 as points page 25 Riordan.
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 25.
FORMULA
T(n,k) = binomial(n+k-1, k)*(binomial(n+k-1, k) - 1)/2.
EXAMPLE
Triangle begins as:
0;
1, 3;
3, 15, 45;
6, 45, 190, 595;
10, 105, 595, 2415, 7875;
15, 210, 1540, 7875, 31626, 106491;
21, 378, 3486, 21945, 106491, 426426, 1471470;
28, 630, 7140, 54285, 313236, 1471470, 5887596, 20701395;
MAPLE
seq(seq( binomial(binomial(n+k-1, k), 2), k=1..n), n=1..10); # G. C. Greubel, Nov 28 2019
MATHEMATICA
Table[Binomial[Binomial[n+k-1, k], 2], {n, 10}, {k, n}]//Flatten (* modified by G. C. Greubel, Nov 28 2019 *)
PROG
(PARI) T(n, k) = binomial(binomial(n+k-1, k), 2); \\ G. C. Greubel, Nov 28 2019
(Magma) [Binomial(Binomial(n+k-1, k), 2): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 28 2019
(Sage) [[binomial(binomial(n+k-1, k), 2) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 28 2019
(GAP) Flat(List([1..10], n-> List([1..n], k-> Binomial(Binomial(n+k-1, k), 2) ))); # G. C. Greubel, Nov 28 2019
CROSSREFS
Sequence in context: A126319 A165553 A056314 * A373692 A078631 A352802
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 07 2009
STATUS
approved