login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352802
Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (j + 3 * x).
3
1, 0, 3, 3, 15, 45, 198, 972, 5652, 37881, 289548, 2492640, 23906475, 253012653, 2930556024, 36883817127, 501315357690, 7318715960511, 114224260779891, 1897913866979529, 33449523840512127, 623265596538965334, 12241892922194658510, 252793167644378784006
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} 3^k * |Stirling1(n-k,k)|.
MATHEMATICA
a[n_] := Sum[3^k * Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, j+3*x)))
(PARI) a(n) = sum(k=0, n\2, 3^k*abs(stirling(n-k, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 09 2022
STATUS
approved