login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171376 Numbers n such that 1 + 3*10^n + 100^n is prime. 2
0, 1, 2, 3, 4, 11, 14, 16, 92, 133, 153, 378, 448, 785, 1488, 1915, 2297, 3286, 4755, 5825, 7820, 34442, 34941 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
All primes were certified with WinPFGW.
a(24) > 35000. - Serge Batalov, Dec 20 2015
LINKS
EXAMPLE
4 is in the sequence because 10^8 + 3 * 10^4 + 1 = 100030001 is prime.
MATHEMATICA
Select[Range@ 1000, PrimeQ[1 + 3 10^# + 100^#] &] (* Michael De Vlieger, Dec 18 2015 *)
PROG
(PARI) \\sieve for the candidates:
{
lim=10^9; ns=6*10^5; pp=10^7; s=vectorsmall(ns);
forprime(p=11, lim, if(kronecker(5, p)==1, o=znorder(t=Mod(10, p));
q=sqrt(Mod(5, p)); r=znlog((q-3)/2, t, o);
if(r, forstep(n=r, ns, o, s[n]=1); forstep(n=o-r, ns, o, s[n]=1)));
if(p>pp, pp+=10000000; print1(p" ")));
for(n=1, ns, if(!s[n], write("sieve_out_10301NGm1.txt", n)));
}
\\quick initial check for small sequence members
for(n=0, 2297, if(ispseudoprime((10^n+3)*10^n+1), print1(n", ")))
\\ Serge Batalov, Dec 17 2015
(Magma) [n: n in [0..4*10^2] | IsPrime(1+3*10^n+100^n)]; // Vincenzo Librandi, Dec 22 2015
CROSSREFS
Cf. A082622.
Sequence in context: A184806 A176541 A295721 * A317913 A141704 A061919
KEYWORD
more,nonn
AUTHOR
Jason Earls, Dec 07 2009
EXTENSIONS
a(21)-a(23) from Serge Batalov, Dec 20 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 04:38 EST 2023. Contains 367699 sequences. (Running on oeis4.)