login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171378
a(n) = (n+1)^2 - A006046(n+1).
1
0, 1, 4, 7, 14, 21, 30, 37, 52, 67, 84, 99, 120, 139, 160, 175, 206, 237, 270, 301, 338, 373, 410, 441, 486, 529, 574, 613, 662, 705, 750, 781, 844, 907, 972, 1035, 1104, 1171, 1240, 1303, 1380, 1455, 1532, 1603, 1684, 1759, 1836, 1899, 1992, 2083, 2176, 2263
OFFSET
0,3
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10000 (a(0..999) from Robert Price)
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 6, 30.
MATHEMATICA
Table[(n+1)^2 -Sum[Sum[Mod[Binomial[m, k], 2], {k, 0, m}], {m, 0, n}], {n, 0, 60}]
a[0] = 0; a[1] = 1; a[n_] := a[n] = 2 a[Floor[#]] + a[Ceiling[#]] &[n/2]; Array[(# + 1)^2 - a[# + 1] &, 52, 0] (* Michael De Vlieger, Nov 01 2022 *)
PROG
(PARI) {a(n) = (n+1)^2 - sum(m=0, n, sum(k=0, m, binomial(m, k)%2))};
for(n=0, 60, print1(a(n), ", ")) \\ G. C. Greubel, Apr 11 2019
(Magma) [(n+1)^2 - (&+[ (&+[ Binomial(m, k) mod 2: k in [0..m]]): m in [0..n]]): n in [0..60]]; // G. C. Greubel, Apr 11 2019
(Sage) [(n+1)^2 - sum(sum(binomial(m, k)%2 for k in (0..m)) for m in (0..n)) for n in (0..60)] # G. C. Greubel, Apr 11 2019
CROSSREFS
Sequence in context: A157615 A338551 A188319 * A147478 A147372 A201272
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 07 2009
EXTENSIONS
Edited by G. C. Greubel, Apr 11 2019
Definition corrected by Georg Fischer, Jun 21 2020
STATUS
approved