login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201272
Number of n X 3 0..2 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
3
1, 1, 4, 7, 14, 21, 41, 54, 86, 120, 168, 218, 307, 377, 496, 621, 776, 937, 1177, 1380, 1676, 1984, 2344, 2716, 3221, 3665, 4260, 4875, 5570, 6285, 7201, 8026, 9074, 10152, 11344, 12566, 14071, 15449, 17136, 18865, 20748, 22673, 24977, 27112, 29656, 32256, 35056
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..210 from R. H. Hardin)
FORMULA
a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - 4*a(n-5) + 2*a(n-7) - 2*a(n-9) + 4*a(n-11) + a(n-12) - 2*a(n-13) - 2*a(n-14) + a(n-16).
G.f.: 1 + x*(1 + 4*x + 5*x^2 + 4*x^3 + 7*x^5 + 7*x^6 + 2*x^7 - x^8 + x^9 + 4*x^10 + x^11 - 2*x^12 - 2*x^13 + x^15) / ((1 - x)^5*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)^3). - Colin Barker, Mar 02 2018
EXAMPLE
Some solutions for n=5:
..0..0..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..2....0..0..1
..0..0..2....0..0..1....0..0..2....0..0..1....0..0..1....0..0..2....0..1..1
..1..1..2....1..1..2....0..1..2....1..1..1....0..1..2....0..1..2....0..1..2
..1..1..2....1..1..2....1..1..2....1..2..2....1..1..2....1..1..2....0..1..2
..1..2..2....2..2..2....1..2..2....2..2..2....2..2..2....1..1..2....2..2..2
CROSSREFS
Column 3 of A201277.
Sequence in context: A171378 A147478 A147372 * A147440 A146678 A146417
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Nov 29 2011
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 18 2024
STATUS
approved