|
|
A201272
|
|
Number of n X 3 0..2 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
|
|
2
|
|
|
1, 4, 7, 14, 21, 41, 54, 86, 120, 168, 218, 307, 377, 496, 621, 776, 937, 1177, 1380, 1676, 1984, 2344, 2716, 3221, 3665, 4260, 4875, 5570, 6285, 7201, 8026, 9074, 10152, 11344, 12566, 14071, 15449, 17136, 18865, 20748, 22673, 24977, 27112, 29656, 32256, 35056
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - 4*a(n-5) + 2*a(n-7) - 2*a(n-9) + 4*a(n-11) + a(n-12) - 2*a(n-13) - 2*a(n-14) + a(n-16).
Empirical g.f.: x*(1 + 4*x + 5*x^2 + 4*x^3 + 7*x^5 + 7*x^6 + 2*x^7 - x^8 + x^9 + 4*x^10 + x^11 - 2*x^12 - 2*x^13 + x^15) / ((1 - x)^5*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)^3). - Colin Barker, Mar 02 2018
|
|
EXAMPLE
|
Some solutions for n=5:
..0..0..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..2....0..0..1
..0..0..2....0..0..1....0..0..2....0..0..1....0..0..1....0..0..2....0..1..1
..1..1..2....1..1..2....0..1..2....1..1..1....0..1..2....0..1..2....0..1..2
..1..1..2....1..1..2....1..1..2....1..2..2....1..1..2....1..1..2....0..1..2
..1..2..2....2..2..2....1..2..2....2..2..2....2..2..2....1..1..2....2..2..2
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|