|
|
A201271
|
|
Number of n X 2 0..2 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
|
|
2
|
|
|
1, 3, 5, 4, 12, 16, 9, 27, 33, 16, 48, 56, 25, 75, 85, 36, 108, 120, 49, 147, 161, 64, 192, 208, 81, 243, 261, 100, 300, 320, 121, 363, 385, 144, 432, 456, 169, 507, 533, 196, 588, 616, 225, 675, 705, 256, 768, 800, 289, 867, 901, 324, 972, 1008, 361, 1083, 1121, 400, 1200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 3*a(n-3) -3*a(n-6) +a(n-9).
Subsequences for n modulo 3 = 1,2,0:
p=(n+2)/3: a(n) = 3*p^2
q=(n+1)/3: a(n) = 3*q^2 + 2*q
r=(n+0)/3: a(n) = r^2 + 2*r + 1.
G.f.: 1+x*(3 + 5*x + 4*x^2 + 3*x^3 + x^4 - 3*x^5 + x^8) / ((1 - x)^3*(1 + x + x^2)^3). - Colin Barker, May 22 2018
|
|
EXAMPLE
|
Some solutions for n=5:
..0..1....0..1....0..0....0..0....0..0....0..0....0..0....0..1....0..1....0..0
..0..1....0..1....0..0....0..1....0..1....0..1....0..0....0..2....0..1....0..2
..0..1....0..1....1..2....1..1....1..1....1..2....1..1....0..2....0..2....1..2
..0..2....1..2....1..2....2..2....1..2....1..2....1..2....1..2....1..2....1..2
..2..2....2..2....1..2....2..2....2..2....2..2....2..2....1..2....2..2....1..2
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|