%I
%S 3,5,4,12,16,9,27,33,16,48,56,25,75,85,36,108,120,49,147,161,64,192,
%T 208,81,243,261,100,300,320,121,363,385,144,432,456,169,507,533,196,
%U 588,616,225,675,705,256,768,800,289,867,901,324,972,1008,361,1083,1121,400,1200
%N Number of n X 2 0..2 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
%C Column 2 of A201277.
%H R. H. Hardin, <a href="/A201271/b201271.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n3) 3*a(n6) +a(n9).
%F Subsequences for n modulo 3 = 1,2,0:
%F p=(n+2)/3: a(n) = 3*p^2
%F q=(n+1)/3: a(n) = 3*q^2 + 2*q
%F r=(n+0)/3: a(n) = r^2 + 2*r + 1.
%F Empirical g.f.: x*(3 + 5*x + 4*x^2 + 3*x^3 + x^4  3*x^5 + x^8) / ((1  x)^3*(1 + x + x^2)^3).  _Colin Barker_, May 22 2018
%e Some solutions for n=5:
%e ..0..1....0..1....0..0....0..0....0..0....0..0....0..0....0..1....0..1....0..0
%e ..0..1....0..1....0..0....0..1....0..1....0..1....0..0....0..2....0..1....0..2
%e ..0..1....0..1....1..2....1..1....1..1....1..2....1..1....0..2....0..2....1..2
%e ..0..2....1..2....1..2....2..2....1..2....1..2....1..2....1..2....1..2....1..2
%e ..2..2....2..2....1..2....2..2....2..2....2..2....2..2....1..2....2..2....1..2
%Y Cf. A201277.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 29 2011
