Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 08 2022 08:45:49
%S 0,1,3,3,15,45,6,45,190,595,10,105,595,2415,7875,15,210,1540,7875,
%T 31626,106491,21,378,3486,21945,106491,426426,1471470,28,630,7140,
%U 54285,313236,1471470,5887596,20701395,36,990,13530,122265,827541,4507503,20701395,82812015,295475895
%N Triangle, read by rows, T(n, k) = A059481(n,k)*(A059481(n,k) - 1)/2.
%C Row sums are: {0, 4, 63, 836, 11000, 147757, 2030217, 28435780, 404461170, 5824442504, ...}.
%C The sequence is the number of connections between figurate numbers A059481 as points page 25 Riordan.
%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 25.
%H G. C. Greubel, <a href="/A171379/b171379.txt">Rows n = 1..100 of triangle, flattened</a>
%F T(n,k) = binomial(n+k-1, k)*(binomial(n+k-1, k) - 1)/2.
%e Triangle begins as:
%e 0;
%e 1, 3;
%e 3, 15, 45;
%e 6, 45, 190, 595;
%e 10, 105, 595, 2415, 7875;
%e 15, 210, 1540, 7875, 31626, 106491;
%e 21, 378, 3486, 21945, 106491, 426426, 1471470;
%e 28, 630, 7140, 54285, 313236, 1471470, 5887596, 20701395;
%p seq(seq( binomial(binomial(n+k-1, k), 2), k=1..n), n=1..10); # _G. C. Greubel_, Nov 28 2019
%t Table[Binomial[Binomial[n+k-1, k], 2], {n,10}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Nov 28 2019 *)
%o (PARI) T(n,k) = binomial(binomial(n+k-1, k), 2); \\ _G. C. Greubel_, Nov 28 2019
%o (Magma) [Binomial(Binomial(n+k-1, k), 2): k in [1..n], n in [1..10]]; // _G. C. Greubel_, Nov 28 2019
%o (Sage) [[binomial(binomial(n+k-1, k), 2) for k in (1..n)] for n in (1..10)] # _G. C. Greubel_, Nov 28 2019
%o (GAP) Flat(List([1..10], n-> List([1..n], k-> Binomial(Binomial(n+k-1, k), 2) ))); # _G. C. Greubel_, Nov 28 2019
%Y Cf. A059481, A143418.
%K nonn,tabl
%O 1,3
%A _Roger L. Bagula_, Dec 07 2009