login
A169243
Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.
0
1, 38, 1406, 52022, 1924814, 71218118, 2635070366, 97497603542, 3607411331054, 133474219248998, 4938546112212926, 182726206151878262, 6760869627619495694, 250152176221921340678, 9255630520211089605086
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170757, although the two sequences are eventually different.
First disagreement at index 28: a(28) = 83412309581224505046237226563688643346617551, A170757(28) = 83412309581224505046237226563688643346618254. - Klaus Brockhaus, May 24 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, -666).
FORMULA
G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^28 - 36*t^27 - 36*t^26 - 36*t^25 - 36*t^24 - 36*t^23 - 36*t^22 - 36*t^21 - 36*t^20 - 36*t^19 - 36*t^18 - 36*t^17 - 36*t^16 - 36*t^15 - 36*t^14 - 36*t^13 - 36*t^12 - 36*t^11 - 36*t^10 - 36*t^9 - 36*t^8 - 36*t^7 - 36*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).
MATHEMATICA
coxG[{28, 666, -36}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 22 2015 *)
CROSSREFS
Cf. A170757 (G.f.: (1+x)/(1-37*x)).
Sequence in context: A169099 A169147 A169195 * A169291 A169339 A169387
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved