login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169195
Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^27 = I.
0
1, 38, 1406, 52022, 1924814, 71218118, 2635070366, 97497603542, 3607411331054, 133474219248998, 4938546112212926, 182726206151878262, 6760869627619495694, 250152176221921340678, 9255630520211089605086
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170757, although the two sequences are eventually different.
First disagreement at index 27: a(27) = 2254386745438500136384789907126720090448439, A170757(27) = 2254386745438500136384789907126720090449142. - Klaus Brockhaus, May 07 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, -666).
FORMULA
G.f.: (t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^27 - 36*t^26 - 36*t^25 - 36*t^24 - 36*t^23 - 36*t^22 - 36*t^21 - 36*t^20 - 36*t^19 - 36*t^18 - 36*t^17 - 36*t^16 - 36*t^15 - 36*t^14 - 36*t^13 - 36*t^12 - 36*t^11 - 36*t^10 - 36*t^9 - 36*t^8 - 36*t^7 - 36*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).
CROSSREFS
Cf. A170757 (G.f.: (1+x)/(1-37*x)).
Sequence in context: A169051 A169099 A169147 * A169243 A169291 A169339
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved