login
A169099
Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
0
1, 38, 1406, 52022, 1924814, 71218118, 2635070366, 97497603542, 3607411331054, 133474219248998, 4938546112212926, 182726206151878262, 6760869627619495694, 250152176221921340678, 9255630520211089605086
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170757, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 1646739770225347068213871371166340459815, A170757(25) = 1646739770225347068213871371166340460518. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, -666).
FORMULA
G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^25 - 36*t^24 - 36*t^23 - 36*t^22 - 36*t^21 - 36*t^20 - 36*t^19 - 36*t^18 - 36*t^17 - 36*t^16 - 36*t^15 - 36*t^14 - 36*t^13 - 36*t^12 - 36*t^11 - 36*t^10 - 36*t^9 - 36*t^8 - 36*t^7 - 36*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[24]]+t^25+1, den=Total[-36 t^Range[24]]+666t^25+1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, Mar 26 2012 *)
CROSSREFS
Cf. A170757 (G.f.: (1+x)/(1-37*x)).
Sequence in context: A168955 A169003 A169051 * A169147 A169195 A169243
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved