login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169240
Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.
0
1, 35, 1190, 40460, 1375640, 46771760, 1590239840, 54068154560, 1838317255040, 62502786671360, 2125094746826240, 72253221392092160, 2456609527331133440, 83524723929258536960, 2839840613594790256640, 96554580862222868725760
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170754, although the two sequences are eventually different.
First disagreement at index 28: a(28) = 7834274861747508114159713710318623433686445, A170754(28) = 7834274861747508114159713710318623433687040. - Klaus Brockhaus, May 24 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, -561).
FORMULA
G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(561*t^28 - 33*t^27 - 33*t^26 - 33*t^25 - 33*t^24 - 33*t^23 - 33*t^22 - 33*t^21 - 33*t^20 - 33*t^19 - 33*t^18 - 33*t^17 - 33*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[27]]+t^28+1, den=Total[-33 t^Range[27]]+561t^28+ 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, May 20 2013 *)
CROSSREFS
Cf. A170754 (G.f.: (1+x)/(1-34*x)).
Sequence in context: A169096 A169144 A169192 * A169288 A169336 A169384
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved