login
A169245
Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.
0
1, 40, 1560, 60840, 2372760, 92537640, 3608967960, 140749750440, 5489240267160, 214080370419240, 8349134446350360, 325616243407664040, 12699033492898897560, 495262306223057004840, 19315229942699223188760
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170759, although the two sequences are eventually different.
First disagreement at index 28: a(28) = 363751155045861020790148536452251210025578380, A170759(28) = 363751155045861020790148536452251210025579160. - Klaus Brockhaus, May 24 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, -741).
FORMULA
G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(741*t^28 - 38*t^27 - 38*t^26 - 38*t^25 - 38*t^24 - 38*t^23 - 38*t^22 - 38*t^21 - 38*t^20 - 38*t^19 - 38*t^18 - 38*t^17 - 38*t^16 - 38*t^15 - 38*t^14 - 38*t^13 - 38*t^12 - 38*t^11 - 38*t^10 - 38*t^9 - 38*t^8 - 38*t^7 - 38*t^6 - 38*t^5 - 38*t^4 - 38*t^3 - 38*t^2 - 38*t + 1).
CROSSREFS
Cf. A170759 (G.f.: (1+x)/(1-39*x)).
Sequence in context: A169101 A169149 A169197 * A169293 A169341 A169389
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved