login
A169149
Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
0
1, 40, 1560, 60840, 2372760, 92537640, 3608967960, 140749750440, 5489240267160, 214080370419240, 8349134446350360, 325616243407664040, 12699033492898897560, 495262306223057004840, 19315229942699223188760
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170759, although the two sequences are eventually different.
First disagreement at index 26: a(26) = 239152633166246561992208110750986988839180, A170759(26) = 239152633166246561992208110750986988839960. - Klaus Brockhaus, Apr 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, -741).
FORMULA
G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(741*t^26 - 38*t^25 - 38*t^24 - 38*t^23 - 38*t^22 - 38*t^21 - 38*t^20 - 38*t^19 - 38*t^18 - 38*t^17 - 38*t^16 - 38*t^15 - 38*t^14 - 38*t^13 - 38*t^12 - 38*t^11 - 38*t^10 - 38*t^9 - 38*t^8 - 38*t^7 - 38*t^6 - 38*t^5 - 38*t^4 - 38*t^3 - 38*t^2 - 38*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[25]]+t^26+1, den=Total[ -38 t^Range[25]]+ 741t^26+1}, CoefficientList[Series[ num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Jun 28 2011 *)
CROSSREFS
Cf. A170759 (G.f.: (1+x)/(1-39*x)).
Sequence in context: A169005 A169053 A169101 * A169197 A169245 A169293
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved