login
A169152
Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
0
1, 43, 1806, 75852, 3185784, 133802928, 5619722976, 236028364992, 9913191329664, 416354035845888, 17486869505527296, 734448519232146432, 30846837807750150144, 1295567187925506306048, 54413821892871264854016
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170762, although the two sequences are eventually different.
First disagreement at index 26: a(26) = 1639459586372711052513361634707855770647673, A170762(26) = 1639459586372711052513361634707855770648576. - Klaus Brockhaus, Apr 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, -861).
FORMULA
G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(861*t^26 - 41*t^25 - 41*t^24 - 41*t^23 - 41*t^22 - 41*t^21 - 41*t^20 - 41*t^19 - 41*t^18 - 41*t^17 - 41*t^16 - 41*t^15 - 41*t^14 - 41*t^13 - 41*t^12 - 41*t^11 - 41*t^10 - 41*t^9 - 41*t^8 - 41*t^7 - 41*t^6 - 41*t^5 - 41*t^4 - 41*t^3 - 41*t^2 - 41*t + 1).
MATHEMATICA
coxG[{26, 861, -41}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 10 2021 *)
CROSSREFS
Cf. A170762 (G.f.: (1+x)/(1-42*x)).
Sequence in context: A169008 A169056 A169104 * A169200 A169248 A169296
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved