login
A169008
Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.
0
1, 43, 1806, 75852, 3185784, 133802928, 5619722976, 236028364992, 9913191329664, 416354035845888, 17486869505527296, 734448519232146432, 30846837807750150144, 1295567187925506306048, 54413821892871264854016
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170762, although the two sequences are eventually different.
First disagreement at index 23: a(23) = 22128544249712653230123118922198678649, A170762(23) = 22128544249712653230123118922198679552. - Klaus Brockhaus, Apr 19 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, -861).
FORMULA
G.f.: (t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(861*t^23 - 41*t^22 - 41*t^21 - 41*t^20 - 41*t^19 - 41*t^18 - 41*t^17 - 41*t^16 - 41*t^15 - 41*t^14 - 41*t^13 - 41*t^12 - 41*t^11 - 41*t^10 - 41*t^9 - 41*t^8 - 41*t^7 - 41*t^6 - 41*t^5 - 41*t^4 - 41*t^3 - 41*t^2 - 41*t + 1).
MATHEMATICA
coxG[{23, 861, -41}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 07 2019 *)
CROSSREFS
Cf. A170762 (G.f.: (1+x)/(1-42*x)).
Sequence in context: A168864 A168912 A168960 * A169056 A169104 A169152
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved