login
A169155
Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
0
1, 46, 2070, 93150, 4191750, 188628750, 8488293750, 381973218750, 17188794843750, 773495767968750, 34807309558593750, 1566328930136718750, 70484801856152343750, 3171816083526855468750, 142731723758708496093750
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170765, although the two sequences are eventually different.
First disagreement at index 26: a(26) = 9841712544508343661854104399681091308592715, A170765(26) = 9841712544508343661854104399681091308593750. - Klaus Brockhaus, Apr 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, -990).
FORMULA
G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^26 - 44*t^25 - 44*t^24 - 44*t^23 - 44*t^22 - 44*t^21 - 44*t^20 - 44*t^19 - 44*t^18 - 44*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[25]]+t^26+1, den=Total[-44 t^Range[25]]+ 990t^26+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Jan 24 2013 *)
CROSSREFS
Cf. A170765 (G.f.: (1+x)/(1-45*x)).
Sequence in context: A169011 A169059 A169107 * A169203 A169251 A169299
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved