login
Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
0

%I #10 May 10 2021 15:15:02

%S 1,43,1806,75852,3185784,133802928,5619722976,236028364992,

%T 9913191329664,416354035845888,17486869505527296,734448519232146432,

%U 30846837807750150144,1295567187925506306048,54413821892871264854016

%N Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.

%C The initial terms coincide with those of A170762, although the two sequences are eventually different.

%C First disagreement at index 26: a(26) = 1639459586372711052513361634707855770647673, A170762(26) = 1639459586372711052513361634707855770648576. - Klaus Brockhaus, Apr 30 2011

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H <a href="/index/Rec#order_26">Index entries for linear recurrences with constant coefficients</a>, signature (41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, -861).

%F G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(861*t^26 - 41*t^25 - 41*t^24 - 41*t^23 - 41*t^22 - 41*t^21 - 41*t^20 - 41*t^19 - 41*t^18 - 41*t^17 - 41*t^16 - 41*t^15 - 41*t^14 - 41*t^13 - 41*t^12 - 41*t^11 - 41*t^10 - 41*t^9 - 41*t^8 - 41*t^7 - 41*t^6 - 41*t^5 - 41*t^4 - 41*t^3 - 41*t^2 - 41*t + 1).

%t coxG[{26,861,-41}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, May 10 2021 *)

%Y Cf. A170762 (G.f.: (1+x)/(1-42*x)).

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009