login
A169112
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
0
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663293, 201326580, 402653151, 805306284, 1610612532, 3221224992
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003945, although the two sequences are eventually different.
First disagreement at index 26: a(26) = 100663293, A003945(26) = 100663296. - Klaus Brockhaus, Apr 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1).
FORMULA
G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(t^26 - t^25 - t^24 - t^23 - t^22 - t^21 - t^20 - t^19 - t^18 - t^17 - t^16 - t^15 - t^14 - t^13 - t^12 - t^11 - t^10 - t^9 - t^8 - t^7 - t^6 - t^5 - t^4 - t^3 - t^2 - t + 1).
CROSSREFS
Cf. A003945 (G.f.: (1+x)/(1-2*x)).
Sequence in context: A168968 A169016 A169064 * A169160 A169208 A169256
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved