login
A169016
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.
0
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165821, 50331636, 100663263, 201326508, 402652980, 805305888, 1610611632, 3221222976
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003945, although the two sequences are eventually different.
First disagreement at index 24: a(24) = 25165821, A003945(24) = 25165824. - Klaus Brockhaus, Apr 20 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1).
FORMULA
G.f.: (t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(t^24 - t^23 - t^22 - t^21 - t^20 - t^19 - t^18 - t^17 - t^16 - t^15 - t^14 - t^13 - t^12 - t^11 - t^10 - t^9 - t^8 - t^7 - t^6 - t^5 - t^4 - t^3 - t^2 - t + 1).
CROSSREFS
Cf. A003945 (G.f.: (1+x)/(1-2*x)).
Sequence in context: A168872 A168920 A168968 * A169064 A169112 A169160
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved