login
A169064
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
0
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331645, 100663284, 201326559, 402653100, 805306164, 1610612256, 3221224368
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003945, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 50331645, A003945(25) = 50331648. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1).
FORMULA
G.f.: (t^24 + t^23 + t^22 + t^21 + t^20 + t^19 + t^18 + t^17 + t^16 + t^15 + t^14 + t^13 + t^12 + t^11 + t^10 + t^9 + t^8 + t^7 + t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)/(t^24 - 2*t^23 + t^22 - 2*t^21 + t^20 - 2*t^19 + t^18 - 2*t^17 + t^16 - 2*t^15 + t^14 - 2*t^13 + t^12 - 2*t^11 + t^10 - 2*t^9 + t^8 - 2*t^7 + t^6 - 2*t^5 + t^4 - 2*t^3 + t^2 - 2*t + 1).
CROSSREFS
Cf. A003945 (G.f.: (1+x)/(1-2*x)).
Sequence in context: A168920 A168968 A169016 * A169112 A169160 A122391
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved