login
A168968
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.
0
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582909, 25165812, 50331615, 100663212, 201326388, 402652704, 805305264, 1610610240, 3221219904
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003945, although the two sequences are eventually different.
First disagreement at index 23: a(23) = 12582909, A003945(23) = 12582912. - Klaus Brockhaus, Apr 19 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1).
FORMULA
G.f.: (t^22 + t^21 + t^20 + t^19 + t^18 + t^17 + t^16 + t^15 + t^14 + t^13 + t^12 + t^11 + t^10 + t^9 + t^8 + t^7 + t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)/(t^22 - 2*t^21 + t^20 - 2*t^19 + t^18 - 2*t^17 + t^16 - 2*t^15 + t^14 - 2*t^13 + t^12 - 2*t^11 + t^10 - 2*t^9 + t^8 - 2*t^7 + t^6 - 2*t^5 + t^4 - 2*t^3 + t^2 - 2*t + 1).
MATHEMATICA
With[{num=Total[t^Range[0, 22]], den=Total[-2 t^Range[1, 21, 2]]+ Total[ t^Range[0, 22, 2]]}, CoefficientList[Series[num/den, {t, 0, 40}], t]] (* Harvey P. Dale, Oct 06 2011 *)
CROSSREFS
Cf. A003945 (G.f.: (1+x)/(1-2*x)).
Sequence in context: A168824 A168872 A168920 * A169016 A169064 A169112
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved