login
A168971
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.
0
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718750, 22888183593750, 114440917968750, 572204589843750
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003948, although the two sequences are eventually different.
First disagreement at index 23: a(23) = 14305114746093735, A003948(23) = 14305114746093750. - Klaus Brockhaus, Apr 19 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
FORMULA
G.f.: (t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^23 - 4*t^22 - 4*t^21 - 4*t^20 - 4*t^19 - 4*t^18 - 4*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
MATHEMATICA
coxG[{23, 10, -4, 30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 26 2022 *)
CROSSREFS
Cf. A003948 (G.f.: (1+x)/(1-5*x)).
Sequence in context: A168827 A168875 A168923 * A169019 A169067 A169115
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved