login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169109
Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
0
1, 48, 2256, 106032, 4983504, 234224688, 11008560336, 517402335792, 24317909782224, 1142941759764528, 53718262708932816, 2524758347319842352, 118663642324032590544, 5577191189229531755568, 262127985893787992511696
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170767, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 648022115858739972719828904323294335394760, A170767(25) = 648022115858739972719828904323294335395888. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, -1081).
FORMULA
G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^25 - 46*t^24 - 46*t^23 - 46*t^22 - 46*t^21 - 46*t^20 - 46*t^19 - 46*t^18 - 46*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[24]]+t^25+1, den=Total[-46 t^Range[24]]+1081t^25+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Apr 01 2014 *)
CROSSREFS
Cf. A170767 (G.f.: (1+x)/(1-47*x)).
Sequence in context: A168965 A169013 A169061 * A169157 A169205 A169253
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved