login
A169110
Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
0
1, 49, 2352, 112896, 5419008, 260112384, 12485394432, 599298932736, 28766348771328, 1380784741023744, 66277667569139712, 3181328043318706176, 152703746079297896448, 7329779811806299029504, 351829430966702353416192
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170768, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 1096442287542105804445402922703410046172008, A170768(25) = 1096442287542105804445402922703410046173184. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, -1128).
FORMULA
G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1128*t^25 - 47*t^24 - 47*t^23 - 47*t^22 - 47*t^21 - 47*t^20 - 47*t^19 - 47*t^18 - 47*t^17 - 47*t^16 - 47*t^15 - 47*t^14 - 47*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[24]]+t^25+1, den=Total[-47 t^Range[24]]+ 1128t^25+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Dec 09 2012 *)
CROSSREFS
Cf. A170768 (G.f.: (1+x)/(1-48*x)).
Sequence in context: A168966 A169014 A169062 * A169158 A169206 A169254
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved