login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167934 a(n) = A000041(n) - A032741(n). 6
1, 1, 1, 2, 3, 6, 8, 14, 19, 28, 39, 55, 72, 100, 132, 173, 227, 296, 380, 489, 622, 789, 999, 1254, 1568, 1956, 2433, 3007, 3713, 4564, 5597, 6841, 8344, 10140, 12307, 14880, 17969, 21636, 26012, 31182, 37331, 44582, 53167, 63260, 75170 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

a(n) is also the number of partitions of n whose parts are not all equal, (including however the partition with a single part of size n). Note that the number of partitions of n whose parts are all equal gives the number of divisors of n, for n>0. (See also A144300.)

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

Omar E. Pol, Illustration of the shell model of partitions (2D and 3D view)

Omar E. Pol, Illustration of the shell model of partitions (2D view)

Omar E. Pol, Illustration of the shell model of partitions (3D view)

FORMULA

a(n) = A000041(n) - A032741(n).

EXAMPLE

The partitions of n = 6 are:

6 ....................... All parts are equal, but included .. (1).

5 + 1 ................... All parts are not equal ............ (2).

4 + 2 ................... All parts are not equal ............ (3).

4 + 1 + 1 ............... All parts are not equal ............ (4).

3 + 3 ................... All parts are equal, not included.

3 + 2 + 1 ............... All parts are not equal ............ (5).

3 + 1 + 1 + 1 ........... All parts are not equal ............ (6).

2 + 2 + 2 ............... All parts are equal, not included.

2 + 2 + 1 + 1 ........... All parts are not equal ............ (7).

2 + 1 + 1 + 1 + 1 ....... All parts are not equal ............ (8).

1 + 1 + 1 + 1 + 1 + 1 ... All parts are equal, not included.

Then a(6) = 8.

MAPLE

b:= proc(n, i, k) option remember;

      if n<0 then 0

    elif n=0 then `if`(k=0, 1, 0)

    elif i=0 then 0

    else b(n, i-1, k)+

         b(n-i, i, `if`(k<0, i, `if`(k<>i, 0, k)))

      fi

    end:

a:= n-> 1 +b(n, n-1, -1):

seq(a(n), n=0..50);  #  Alois P. Heinz, Dec 01 2010

MATHEMATICA

a[0] = 1; a[n_] := PartitionsP[n] - DivisorSigma[0, n] + 1; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Jan 08 2016 *)

CROSSREFS

Cf. A000005, A000009, A000041, A000065, A032741, A047967, A111133, A144300, A135010, A138121, A167930, A167932, A167935.

Sequence in context: A326635 A212214 A089426 * A327690 A182269 A321360

Adjacent sequences:  A167931 A167932 A167933 * A167935 A167936 A167937

KEYWORD

nonn

AUTHOR

Omar E. Pol, Nov 16 2009

EXTENSIONS

More terms from Alois P. Heinz, Dec 01 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 04:39 EDT 2022. Contains 354074 sequences. (Running on oeis4.)