login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182269 Number of representations of n as a sum of products of pairs of positive integers, considered to be equivalent when terms or factors are reordered. 20
1, 1, 2, 3, 6, 8, 14, 19, 31, 43, 65, 88, 132, 177, 253, 340, 478, 633, 874, 1150, 1562, 2045, 2736, 3553, 4713, 6082, 7969, 10234, 13301, 16973, 21889, 27789, 35577, 44961, 57179, 71906, 90950, 113874, 143204, 178592, 223505, 277599, 345822, 427934, 530797 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

N. J. A. Sloane, Transforms

FORMULA

Euler transform of A038548.

G.f.: Product_{k>0} 1/(1-x^k)^A038548(k).

G.f.: Product_{k>=1} (Product_{j=1..k} 1/(1 - x^(k*j))). - Vaclav Kotesovec, Aug 19 2019

EXAMPLE

a(0) = 1: 0 = the empty sum.

a(1) = 1: 1 = 1*1.

a(2) = 2: 2 = 1*1 + 1*1 = 1*2.

a(3) = 3: 3 = 1*1 + 1*1 + 1*1 = 1*1 + 1*2 = 1*3.

a(4) = 6: 4 = 1*1 + 1*1 + 1*1 + 1*1 = 1*1 + 1*1 + 1*2 = 1*1 + 1*3 = 1*2 + 1*2 = 2*2 = 1*4.

MAPLE

with(numtheory):

a:= proc(n) option remember;  `if`(n=0, 1, add(add(

       d*ceil(tau(d)/2), d=divisors(j)) *a(n-j), j=1..n)/n)

    end:

seq(a(n), n=0..60);

MATHEMATICA

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*Ceiling[DivisorSigma[0, d]/2], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-Fran├žois Alcover, Sep 09 2014, after Alois P. Heinz *)

nmax = 50; CoefficientList[Series[Product[Product[1/(1 - x^(k*j)), {j, 1, Min[k, nmax/k]}], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2019 *)

CROSSREFS

Cf. A000005, A006171, A038548, A066739, A182270, A211856, A211857.

Sequence in context: A089426 A167934 A327690 * A321360 A321566 A066739

Adjacent sequences:  A182266 A182267 A182268 * A182270 A182271 A182272

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Apr 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 11:23 EDT 2020. Contains 335448 sequences. (Running on oeis4.)