login
A327690
Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003114.
4
1, 1, 2, 3, 6, 8, 14, 19, 31, 43, 64, 88, 131, 176, 250, 337, 471, 626, 859, 1133, 1532, 2008, 2674, 3479, 4595, 5933, 7745, 9952, 12888, 16451, 21142, 26842, 34260, 43283, 54878, 68993, 87017, 108884, 136564, 170191, 212441, 263646, 327616, 405034, 501203, 617423, 760964
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
FORMULA
G.f.: Product_{i>=1} Product_{j>=1} 1 / ((1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4)))).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(QPochhammer[x^(5*j - 4)] * QPochhammer[x^(5*j - 1)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2019
STATUS
approved