login
A167931
Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
9
1, 20, 380, 7220, 137180, 2606420, 49521980, 940917620, 17877434780, 339671260820, 6453753955580, 122621325156020, 2329805177964380, 44266298381323220, 841059669245141180, 15980133715657682420
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, -171).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 171*t^16 - 18*t^15 - 18*t^14 - 18*t^13 - 18*t^12 - 18*t^11 - 18*t^10 - 18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1).
G.f.: (1+x)*(1-x^16)/(1 -19*x +189*x^16 -171*x^17). - G. C. Greubel, Apr 25 2019
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17), {x, 0, 20}], x] (* G. C. Greubel, Jul 01 2016, modified Apr 25 2019 *)
coxG[{16, 171, -18, 20}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17)) \\ G. C. Greubel, Apr 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17) )); // G. C. Greubel, Apr 25 2019
(Sage) ((1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
CROSSREFS
Sequence in context: A167073 A167148 A167680 * A168697 A168745 A168793
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved