login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167613 Array T(n,k) read by antidiagonals: the k-th term of the n-th difference of A131531. 4
0, 0, 0, 1, 1, 1, 0, -1, -2, -3, 0, 0, 1, 3, 6, -1, -1, -1, -2, -5, -11, 0, 1, 2, 3, 5, 10, 21, 0, 0, -1, -3, -6, -11, -21, -42, 1, 1, 1, 2, 5, 11, 22, 43, 85, 0, -1, -2, -3, -5, -10, -21, -43, -86, -171, 0, 0, 1, 3, 6, 11, 21, 42, 85, 171, 342, -1, -1, -1, -2, -5, -11, -22, -43, -85, -170, -341, -683, 0, 1, 2, 3, 5, 10 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

The array contains A131708(0) in diagonal 0, then -A024495(0..1) in diagonal 1, then A024493(0..2) in diagonal 2, then -A131708(0..3), then A024495(0..4), then -A024493(0..5).

LINKS

Table of n, a(n) for n=0..83.

FORMULA

T(0,k) = A131531(k). T(n,k) = T(n-1,k+1) - T(n-1,k), n > 0.

T(n,n) = A001045(n). T(n,n+1) = -A001045(n). T(n,n+2) = A078008(n).

T(n,0) = -T(n,3) = (-1)^(n+1)*A024495(n).

T(n,1) = (-1)^(n+1)*A131708(n).

T(n,2) = (-1)^n*A024493(n).

T(n,k+6) = T(n,k).

a(n) = A131708(0), -A024495(0,1), A024493(0,1,2), -A131708(0,1,2,3), A024495(0,1,2,3,4), -A024493(0,1,2,3,4,5).

EXAMPLE

The table starts in row n=0 with columns k >= 0 as:

0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0 A131531

0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1 A092220

1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2 A131556

-3, 3, -2, 3, -3, 2, -3, 3, -2, 3, -3, 2, -3, 3, -2, 3, -3, 2, -3 A164359

6, -5, 5, -6, 5, -5, 6, -5, 5, -6, 5, -5, 6, -5, 5, -6, 5, -5, 6, -5

-11, 10, -11, 11, -10, 11, -11, 10, -11, 11, -10, 11, -11, 10, -11

21, -21, 22, -21, 21, -22, 21, -21, 22, -21, 21, -22, 21, -21, 22

MAPLE

A131531 := proc(n) op((n mod 6)+1, [0, 0, 1, 0, 0, -1]) ; end proc:

A167613 := proc(n, k) option remember; if n= 0 then A131531(k); else procname(n-1, k+1)-procname(n-1, k) ; end if; end proc: # R. J. Mathar, Dec 17 2010

CROSSREFS

Cf. A167617 (antidiagonal sums).

Sequence in context: A024466 A021817 A069585 * A319753 A078332 A097109

Adjacent sequences:  A167610 A167611 A167612 * A167614 A167615 A167616

KEYWORD

tabl,easy,sign

AUTHOR

Paul Curtz, Nov 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 03:48 EDT 2020. Contains 333136 sequences. (Running on oeis4.)