login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097109
G.f.: s(2)^2*s(3)^3/(s(1)*s(6)^2), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.
4
1, 1, 0, -2, -3, 0, 0, 2, 0, -2, 0, 0, 6, 2, 0, 0, -3, 0, 0, 2, 0, -4, 0, 0, 0, 1, 0, -2, -6, 0, 0, 2, 0, 0, 0, 0, 6, 2, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 6, 3, 0, 0, -6, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, -4, -3, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, -6, 0, 0, 2, 0, -2, 0, 0, 12, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 2, 0, 0, -3, 0, 0, 2, 0
OFFSET
0,4
COMMENTS
Coefficients are multiplicative [Fine].
REFERENCES
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.36).
LINKS
FORMULA
Fine gives an explicit formula for a(n) in terms of the divisors of n.
From Michael Somos, Sep 15 2006: (Start)
Expansion of (a(q) - 3*a(q^3) - 4*a(q^4) + 12*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Euler transform of period 6 sequence [ 1, -1, -2, -1, 1, -2, ...].
a(n) is multiplicative with a(2^e) = -3(1+(-1)^e)/2 if e>0, a(3^e) = -2 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6). (End)
a(3*n + 2) = 0. a(3*n) = A115978(n). a(3*n + 1) = A122861(n).
Sum_{k=0..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 22 2024
MATHEMATICA
QP = QPochhammer; s = QP[q^2]^2*(QP[q^3]^3/(QP[q]*QP[q^6]^2)) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, adapted from PARI *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^3 / (eta(x + A) * eta(x^6 + A)^2), n))} /* Michael Somos, Sep 15 2006 */
(PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if(p==2, 3*(e%2-1), if( p==3, -2, if( p%6==1, e+1, 1-e%2))))))} /* Michael Somos, Sep 15 2006 */
CROSSREFS
KEYWORD
sign,mult
AUTHOR
N. J. A. Sloane, Sep 16 2004
STATUS
approved